
AAI 11183" PURDUE. UNIV LAFAYETTE1 IN SCHOOL OF I*Q4JSTRIAL ENGINEEf!N& F/6 11/1
POISSOM RANDOM VARIATE BENRATION. (U)

DEC1 9 SCIUEISER, V ICACHITVICNYANLC M00014R?9-0B38

UNCASFE Mmhhhhmhm hl

Elj,5128 12.5

11 .0.

1 11112 LA4 __.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

S 0

POISSON RANDOM VARIATE GENERATION

Bruce Schmeiser

Voratas Kachitvichyanukul

School of Industrial Engineering
Purdue University

West Lafayette, Indiana 47907

Research Memorandum 81-4

August 1981

(Revised December 1981)

This research was supported. by Office of Naval Research Contract

N00014-79-C-0832.

DISTRIBUTJ1O qTAFT A

Approved 1c7 rdc.
Ditnibution Umited -

(J V k.

ABSTRACT

Approximate algorithms have long been the only available methods

for generating Poisson random variates when the mean is large. A new

algorithm is developed which is exact, has execution time which is

insensitive to the value of the mean, and is valid whenever the mean is

greater than ten. This algorithm is compared to the three other

algorithms which have been developed recently for generating Poisson

variates when the mean is large. Criteria used are set-up time,

marginal execution time, memory requirements, and lines of code. New

simple tight bounds on Poisson probabilities contribute to the speed of

the algorithm, but are useful in a more general context. In addition, a

survey of Poisson variate generation algorithms is given.

Accoss InPo

IMS

I -4tri:.t -,

A. ." ., -- -

1. INTRODUCTION

We consider algorithms for generating random variates from the

Poisson mass function

f p(x) = e- 1 0X/x! x=0,1,2,...

= 0 eLsewhere,

where P denotes the expected value of the random variable X. In Section

2 existing algorithms for Poisson variate generation are surveyed. A

new algorithm, PTPE, is developed in Section 3. Computational results

are shown in Section 4. The validity of PTPE is discussed in the

Appendix.

2. LITERATURE SURVEY

Each of the four fundamental approaches to variate generation:

inverse transformation, special rties, composition, and

acceptance/rejection, (Schmeiser [18)) has bt-rn used as the basis for

existing algorithms, which we briefly survey here. U(0,1) is used to

denote the uniform distribution over the unit interval.

2

Probably the most basic approach for generating random variates of

any kind is the inverse trans;vrmation.

Algorithm PINV

1. Generate u j U(0,1), set x * 0, p -e- p .

2. If u < p, then return x.

3. Set x - x + 1, u u-p, p 4- pp/x, and go to 2.

When more than one variate is to be generated for a fixed value of U,

PINV may be modified to save the initial value of p in Step 1 and the

cumulative probabilities implicit in Step 3. Either way, the execution

time per variate increases proportionally with V. Fishman 111]
1I/2

developed algorithm PIF which executes in time proportional to 1 by

performing the inverse cransformation beginning at the mode and

searching either increasingly or decreasingly for values of x. To begin

the search at the mode, both the cumulative probability p{X < p} and

probability p{X = u) are stored. Fishman stored these probabilities for

u=1, 2,...,I00 to six decimal places, but the size and accuracy of the

table could easily be modified. The cumulative probabilities are

calculated recursively as in PINV. Snow [20] suggested explicitly

storing the cumulative probabilities and using binary search to

determine x. Chen and Asau [73 proposed an index table approach (for

a y discrete distribution) which searches the cumulative probabilities

quickly by beginning near the appropriate value, and Atkinson [53

included an algorithm based on index tables in his computational

results.

..... ..

3

Special properties have been the basis for several Poisson

algorithms. The best known and simplest is based on the exponential

inter-event times of the homogeneous Poisson point process.

Algorithm PMUL

1. Set x - 0, s - 1, p -- .

2. Generate u r U(0,1), and set s su.

3. Jf s < p, then return x.

4. Set x x + 1, and go to 2.

As with PINV the execution time increases proportionally with p and

storing the initial value of p for future use is reasonable when the

value of p does not change each time a variate is generated. Note that

PINV is faster than PMUL for all values of p whenever the generation of

a U(0,1) variate requires more time than the total time required for a

division, subtraction and a storage move. The authors have seen no

implementation where PMUL was faster than PINV.

In addition to the inverse transformation methods, composition can

be used as the basis for Poisson algorithms. Composition, or

probability mixing, is used in variate generation by returning a variate
n

from fi(x) with probability pi when f(x) = z Pi fi(x), where n may be
i=I

finite or infinite and each f.(x) is either a discrete probability mass

function or a density function. Let I be a Poisson random variable with

mean x, x > U. Then a binomial random variable, arising from I trials,

each having probability of success p/, has a Poisson distribution with

mean V. The proof is direct by noting

4

f(x) Ce- A /i!][(I)(p/X) x ((Ap) i-x] x=0,1,2,...
p i x x

The advantage to this composition approach is that e- P does not

need to be calculated during setup. Usually X = 1 (Ahrens and Dieter

[2] and Fishman 111]) with the resulting algorithm being used to supply

x from the fractional portion of p when p is not integer. A reasonable

implementation for p < 1 "thins" a Poisson variate with unit mean.

Using PINV to generate the variate with a mean of one yields

Algorithm PTH (V < 1)

1. Generate u - U(0,1), set x 4- , k + 0, p - .367879441171.

2. if u < p, then return x.

3. Set k 4 k+1, u 4 u-p, p - p/k. Generate v r U(0,1).

If v < p, then set x * x+1. Go to 2.

Fishman 111 gives the algorithm in a form assuming the cumulative

probabilities for p = 1 are tabled. A similar algorithm can be created

by incrementing x in Step 4 of PMUL with probability p and initializing

p + .367879441171 = e 1 in Step 1. The idea of thinning is related to

the result by Bolshev [6] discussed later in this section. Lewis and

Shedler [143 have developed an algorithm for nonhomogeneous Poisson

point processes which is also related.

Ahrens and Dieter [2) proposed aLgorithm PG which uses

relationships between the Poisson, gamma and binomial distributions to

generate Poisson variates in time increasing with Ln(p). In their

computational results, the execution time is greater than for other

algorithms unless the mean is quite large. However, newer algorithms

5

for gamma generation (see, e.g., Cheng [8), Schmeiser and Lal [19)) and

binomial generation (see, e.g., Devroye and Naderisamani [10)) make this

algorithm more competitive.

Ahrens and Dieter [2) also developed a third algorithm based on

composition. In the Ahrens and Dieter algorithm PT, a triangular

density is used to return the variate most of the time. The other parts

of the distribution are more time consuming but occur infrequently. The

1/2
execution time increases with v

The acceptance/rejection algorithm is the basis for three recent

Poisson generation algorithms, all of which have execution times which

do not increase (and in fact decrease slightly) as p * . The

acceptance/rejection algorithm centers on a function t(x) which

majorizes f(x), the density function from which variates are to be

generated. The density function r(x) = t(x)/ f t(y)dy is proportional

to t(x). The acceptance/rejection algorithm is

1. Generate x - r(x).

2. Generate v , U(0,1).

3. If v < f(x)/t(x), then return with x as the generated variate.

Otherwise, go to Step 1, thereby rejecting x.

The selection of any function t(x) satisfying t(x) > f(x) for all

x c (-) yields a valid algorithm. Whether the algorithm is good

depends upon the speed of performing Step 1, the difficulty in

evaluating the ratio in Step 3, and the expected number of iterations

-7 T

6

required to generate one variate. Atkinson [5) proposes algorithm PA

which uses a logistic majorizing function and Devroye £9) proposes

algorithm IP which uses a normal majorizing function for the body of the

distribution and exponential distribution for the right tail. Algorithm

PA uses tabled values for x! for x=0,1,...,200. Algorithm IP uses

preliminary comparisons to avoid calculating x! so often that when

evaluation of x! is required, it is performed explicitly as

x=x(x-1)...(3)(2). Ahrens and Dieter £3) develop an algorithm based on

a double exponential majorizing function.

Kronmal and Peterson [13] describe the "acceptance/complement"

method, which is a composition approach which requires one region to be

generated using acceptance/rejection. Set-up time can be reduced by

forcing the probability of rejection to be equal to the probability of

generating a variate from the second composition region. Ahrens and

Dieter [4] develop an acceptance/complement algorithm, KPOISS, based on

the normal distribution, that dominates their earlier algorithm in £3].

Four approaches which provide variates which are approximately

Poisson have been proposed. Atkinson [5] includes the approach

developed in Marsaglia £15) and Norman and Cannon £16) which is based on

composition and tabling many values. It inherently requires P(X=x) to

be truncated, although the amount of truncation may be limited by

increasing the table size. This algorithm could be considered when

memory is not a problem, a small error is acceptable, and many Poisson

variates are to be generated for a fixed value of a.

The second approximate approach is to use a normal approximation to

the distribution. Pak £17] discusses the normal approximation to the

-his

7

distribution of X, (X + .375)1/2 and (X - 1/24)1/3 where X is the

Poisson random variable.

The third approximate approach is to use Walker's [22] alias

method. The method requires truncation of the right tail of the

distribution, memory requirements increase linearly with the mean, and

set-up time is substantial for large values of the mean. An alias

algorithm was the fastest method for generating Poisson variates

according to Atkinson [5]. This approach could be made exact by using a

composition framework to obtain the tail values.

The fourth approximate procedure is based on an exact result by

Bolshev [6]: If (X ,X2 ... Xn) is a multinomial random vector with

parameters y and p. = 1/n for i=1,2,...,n and y is a Poisson random

variable with mean nu, then XI,X 2,... ,Xn are independent Poisson random

variables each with mean U. Tadikamalla [21] suggested using the normal

distribution to generate y, noting that the error can be made

arbitrarily small by selecting n large. Despite the constant execution

time of generating y from the normal distribution, the aLgorithm's

execution time as implemented by Tadikamalla increases linearly with ±.

However, the existence of a multinomial algorithm with execution time
n

robust to y = £ X. would make the use of Bolshev's result very
i=I

appealing. Note that Bolshev's result can be used to create an exact

algorithm by generating y by algorithm PA, IP, KPOISS, or PTPE.

3. ALGORITHM PTPE

The Poisson random variate generation algorithm PTPE is developed

in this section. Generation of variates is via acceptance/rejection,

8

based on

f(x) = i(' M!/Y! -0.5 < x < (1)

0 elsewhere,

where M = p >, y = < x + .5 >, and < s > denotes the integer portion

of s. The function f(x) is constructed by rescaling the Poisson

probability function f (y) by the value of the function at the mode M.
p

This specific scaling has three advantages:

1. f(M) = 1 for all p, thereby reducing set-up time.

2. Machine accuracy evaluation of f(y) requires fewer terms of

Stirling's approximation than does f p(y), because the errors

in M! and Y! tend to cancel.

3. f(x) is numerically stable.

Although details will remain, specification of the majorizing

function t(x) and minorizing function b(x) defines the basic structure

of the algorithm as shown in Figure A. The majorizing function is

kLexp[-(xL - x - .5)] -O < x < XL. 5

t(x) (1 + c) - IM - x + .51/p XL.5 < x < XR.5 (2)

c exp[-x R(x + .5 - XR)] x > xR-.5

and the minorizing function is

1 - IM - x + .51/p, XL-.5 < x < XR-.5 (3)
b(x) =

0 elsewhere.

The constants kL, XL, XR, c, PI" XL" and xR are defined as functions of

in the set-up step of the algorithm. Proposition I in the Appendix

9

addresses the validity of t(x) as a majorizing function of f(x).

Figure A about here

Composition based on four regions (subdensities) is used to

generate variates from the density function proportional to t(x).

Region 1, which is the area under b(x), is triangular with zero

probability of rejection. Region 2 contains the two parallelograms

which can be generated as uniform variates. Regions 3 and 4 are

negative exponential. pP P2" P3" and P4 in the set-up step are the

cumulative values needed to randomly select the region to be used in

each iteration. The probability of selecting each region is

proportional to its area.

Algorithm PTPE (_P > 10)

Step 0. (Set-up constants as function of .. Execute whenever the

value of v changes.)

M = <)I> P1 = <2.195 /M -2.2>+0.5,

c = 0.133 + 8.56/(6.83 + p),

xM = M+0.5, xL = xm Pl" XR = Xm

a = (1 - xL)/1, XL = aWl+a/2),

a = (xR - P)/xR, XR = a(l+a/2),

P2 = P (1+2c),

P3 = P2 + (0.109+8.25/C10.86+P))/L

P4 = P3 + C/ R

Step 1. (Begin logic to generate next variate. Generate u for selecting

~10

the region. If region I is selected, generate triangularly

distributed variate and return.)

Generate u - U(O,p 4), v ^ U(0,1).

If u > pl, go to 2. Otherwise return y = <xM-Plv+u>.

Step 2. (Region 2. ParalLelograms. Check whether Region 2 is used.

If so, generate y uniformly in [XL-.5, X R-51 and go to Step 5

for acceptance/rejection comparison.)

If u > p2' go to 3.

Otherwise x = xL + (u-pl)/c,

v = vc + 1 - IM-x+O.51/pl.

If v > 1, go to 1.

Otherwise set y = <x> and go to 5.

Step 3. (Region 3, Left tail)

If u > p3 " go to 4.

Otherwise set y = <xL + tn(v)/XL> ,

If y < 0, go to 1.

Otherwise set v = v(u-p 2)X L and go to 5.

Step 4. (Region 4, Right tail)

Set y = <xR - tn(v)/xR>,

v = v(u-p 3)XR.

3 R'

~11

Step 5. (Acceptance/Rejection comparison)

5.0 (Test for method of evaluating f(y))

If M > 100 and y > 50, go to 5.2.

5.1 (EvaLuate f(y) via the recursive relationship

f(y)=f(y-1)U/y. Start the search from the mode.)

F = 1.0

If M < y,

Then set I = M and

Repeat

I=I+1

F=Fu/I

until I=y.

Otherwise

If M > y,

Then set I=y and

Repeat

I=I+l

F=FI/V

until I=M

End if.

End if

If v > F, go to 1.

Otherwise return y.

5.2 (Squeezing, check the value of tn v against upper

12

and Lower bounds of tr' f (Y).

x =y.

q (C'px) /x.

Ue x-i+(x+.5)q(1+q(-.5+q/3)) + .00084.

A = n(v).

If A > U8, go to 1.

D =(x+.5) 4A.

If q < 0, D = D/(l+q).

If A <U B - D - .004, return y.

5.3 (Perform final acceptance/rejection test by using the

expression of tn f(y) derived from the Stirling's

formula.)

If A > E(M+.5)Ln(M/),) + Cx+.5)tnCm/x - M + x

" (1./N - ./x)/12.

3 3" (1./x - ./M)/360.1 go to 1.

otherwise return y.

Remark 1.

In Step 1, Region 1 is selected. Since Region 1 Lies entirety

under f(x), the probabitity of rejection is zero. Since u -PUOp)

then u/p1 Pi U(0,1). The trianguLarly distributed variates are generated

as the sum of two independent uniform variates, denoted w and v. Then

y M + 0.5 + (w+v-l)p,

Xp + wp1 - vp 1 .

M I

13

Since v i U(0,1), then (1-v) is also U(0,1). Replacing w by u/p1 and

(l-v) by v yields the expression used in Step 1.

Remark 2.

In Region 2, x is uniformly distributed between M-p1 and M+pl.

Since u is uniformly distributed between p1 and P2 in this region,

w = (u-pl)/(p2-pl) is U(0,1). From the setup, p2-P1 is equal to 2cp I.

Substituting into x = xL + 2wpI yields the expression for x used in Step

2. The expression for v results in v r U(b(x), b(x)+c), where

b(x) = 1 - IM-x+.51/pl is the triangle of Region 1.

Remark 3.

In Step 3, x is the negative of a negative exponential random

variate. The upper bound of x is xL and the mean is xL -1/X L .

Similarly in Step 4, x is negative exponentially distributed with Lower

bound xR and mean xR + 1/X R '

In Region 3, the accept/reject variate v - U(O,t(x)), is

v = wkL exp[-xL(x L - x - .5)] where w ,'U(0,1).

The exponential variate x can be generated as x = xL. 0.5 + n(v')/xL,

where v' ,U(0,1). Then v = wkLexp-X L (-n(v')/XL)] = wkLv'. Replacing

w by (u-p2)I(p3-p2) and (p3-P2) by kL/XL yields the result in Step 3. A

similar derivation leads to the expression used in Step 4.

Remark 4.

In Step 5.0, a test is made to select the method of evaluating

f(y). The criteria used here is based on both M and y. For small

values of M and y, direct calculation using the recursive formula is

14

faster than evaluating the bounds derived from the Stirling's formula.

Step 5.1 is similar to algorithm PF by Fishman with f(y) in place of

f p(y), but requires no tabled constants. In Step 5.2, a preliminary

test is made by comparing ln(v) against upper and lower bounds of

tn f(y). The expressions of in f(y) and its bounds are given in the

Appendix.

Remark 5.

The idea underlying the setup for Region 3 is to pass the

majorizing function t1 (x) through the point f(xL-. 5) and f(xL-1.5).

This same approach is used in Region 4 using f(xR-0.5) and f(xR+0.5).

The result is tl(x) in Figure B.

Figure B about here

This exact set-up requires six logarithms and two exponential

operations. These operations are slow and can be avoided. The setup in

PTPE uses the majorizing function t(x) as shown in Figure B, which does

not require higher order operations. The use of t(x) increases the

probability of rejection slightly, but the gain in efficiency by

avoiding higher order operations in the setup is significant in the

cases where the value of mean p changes often. That these exponential

tails majorize f(x) is proved in the Appendix.

Remark 6.

The expected number of U(0,1) values required to generate a PoissonM

variate is 2(p4)(e /M!), where M is the integer portion of and

p= t(x)dx, as defined in Step 0. The derivation is

at

15

straightforward. The expected number of iterations is

fJtxdx/ f f(x)dx= P41[M!/eU PM) f f p xdl

p4 (e - P P /M)

Multiplying by the two U(0,1) values per iteration yields the result.

Remark 7.

ALL four fundamental concepts are included in PTPE. The overall

structure of PTPE is acceptance/rejection. The inverse transformation

is used to select the region, to generate uniformly distributed variates

for Region 2, and to generate exponentially distributed variates for

Regions 3 and 4. The use of four regions is composition. The special

property that the sum of two independent U(a,b) random variables has a

triangular distribution is used in Region 1.

4. COMPUTATIONAL EXPERIENCE

The four algorithms for which execution time approaches a constant

as p -, PA, IP, KPOISS, and PTPE, are compared here in terms of setup

times, marginal execution times, lines of code, and memory requirements.

The Ahrens and Dieter algorithm in [3) is dominated by KPOISS and not

discussed here. AlL four algorithms were implemented in FORTRAN using

the MNF compiler on Purdue University's CDC 6500 computer. The uniform

(0,1) variates were generated using RANF, which is intrinsic in the MNF

compi ler.

- - ---. ---------- --- - ..--- - -- - - - - - - - - - - a- -C'.-

16

For each combination of p and algorithm, four replications of 3000

variates were timed. The execution times shown in Table 1 are the

averages of the replication averages and are accurate to within one unit

in the last decimal place. The accuracy may also be assessed by

comparing the last four lines in the table, for which most of the

differences in times are due to random variation rather than to changes

in distribut'-n shape.

The marginal execution times, shown under the heading "Fixed Mean"

in Table 1, favor PTPE. The execution times for setting up the

algorithm and generating one variate, shown under the heading

"Incremented Means" in Table 1, were obtained by incrementing P by 10- 9

with each variate generated. Because KPOISS requires little more than a

square root calculation to set up, it is competitive with PTPE when the

mean changes with each variate generated.

Since IP and KPOISS require normal variates, their times are

sensitive to the normal variate generation algorithm used. We used

algorithm KR (see Kinderman and Ramage E121) which is the fastest

FORTRAN level algorithm available. For those who have a faster

assembler language normal generator available, the times for KPOISS and

IP would be less. Of course, all four algorithms would be faster if

coded in assembler Language. Another comment concerns PA. The

approximation given by Atkinson [53 for the constant c is

c = .767 - 3.36/u, which is inaccurate when p < 30. The poor

approximation causes the relatively large execution times of PA for

small values of u-

17

Table 1. Comparison of Algorithms

Fixed Mean Incremented Mean

11 PTPE KPOISSa IPa PA PTPE KPOISS IP PA

10b .33 .38 .66 1.41 .35 .45 1.34 1.78

25 .29 .37 .62 1.03 .50 .45 1.31 1.41

100 .24 .36 .58 .90 .48 .44 1.27 1.27

250 .22 .35 .57 .89 .44 .43 1.26 1.26

1000 .20 .34 .55 .86 .42 .42 1.25 1.24

10,000 .20 .34 .54 .87 .42 .42 1.23 1.24

1,000,000 .20 .34 .54 .87 .41 .41 1.23 1.23

Memory
Require-

ments 279 309 282 146

Lines of
Code 59 64 64 17

a
Using KR for the normal random variates.

b
Times for KPOISS are for = 10 + c.

18

The execution times were compared using a slower U(0,1) generator.

All times in Table 1 increased by about .1 except for IP which had

increases of about .2.

The execution times were also compared using the FTN compiler. For

Large values of p, KPOISS required only 56% more time than PTPE

(compared to 75% under MNF) for fixed means. For variable means KPOISS

was 9% faster than PTPE (compared to 0% under MNF).

Note that several exact algorithms are faster than the four

algorithms compared here for small values of the mean (approximately

,< 50).

While the number of lines of FORTRAN code is only a crude measure

of the goodness of an algorithm, it can be important both in terms of

the effort to implement the algorithm and to verify that the algorithm

is working properly. PA, PTPE, KPOISS, and IP required 17, 59, 64 and

64 lines of code, respectively. This does not include the nine lines

for the routine used to evaluate tn(x!) needed by PA nor the 58 lines of

the KR normal variate generator used here by IP and KPOISS. Algorithms

PA, PTPE, IP, and KPOISS require 146, 279, 282, and 309 words of memory,

respectively, again not including required support routines.

19

REFERENCES

1. Abramowitz, M. and Stegun, I.A., (1964). Handbook of Mathematical
Functions, National Bureau of Standard, Applied Mathmatics Series,
55.

2. Ahrens, J.H. and Dieter, U. (1974). "Computer Methods for Sampling
from Gamma, Beta, Poisson and Binomial Distributions", Computing,
12, 233-246.

3. Ahrens, J.H. and Dieter, U. (1980a). "Sampling from Binomial and
Poisson Distributions: A Method with Bounded Computation Times",
Computing, 25, 193-208.

4. Ahrens, J.H. and Dieter, U. (1980b). "Computer Generation of
Poisson Deviates from Modified Normal Distributions", Technical
Report, University of Kiel, West Germany.

5. Atkinson, A.C. (1979). "The Computer Generation of Poisson Random
Variables", Applied Statistics, 28, 1, 29-35.

6. Bolshev, L.N. (1965). "On a Characterization of the Poisson
Distribution and Its Statistical Applications", Theory of
Probability and its Applications, 10, 446-456.

7. Chen, H.C. and Asau, Y. (1974). "On Generating Random Variates
from an Empirical Distribution", AIIE Transactions, 6, 163-166.

8. Cheng, R.C.N. (1978). "Generating Beta Variates with Non-Integral
Shape Parameters", Communications of he ACM, 21, 4, 317-322.

9. Devroye, L. (1980). "The Computer Generation of Poisson Random
Variables", Technical Report, McGill University, Canada.

10. Devroye, L. and Naderisamani, A. (1980). "A Binomial Random
Variate Generator", Technical Report, McGill University, Canada.

11. Fishman, G.S. (1976). "Sampling from the Poisson Distribution on a
Computer", Computing, 17, 147-156.

12. Kinderman, A.J. and Ramage, J.G. (1976). "Computer Generation of
Normal Random Variables", Journal of the American Statistical
Association, 71, 356, 893-896.

20

13. Kronmal, R.A. and Peterson, A.V. Jr. (1981). "A Variant of the
Acceptance-Rejection Method for Computer Generation of Random
Variables", Journal of the American Statistical Association, 76,
374, 446-451.

14. Lewis, P.A.W. and Shedler, G.S. (1979). "Simulation of
Nonhomogeneous Poisson Processes by Thinning", Naval Research
Logistics Quarterly, 26, 3, 403-413.

15. Marsaglia, G. (1963). "Generating Discrete Random Variables in a
Computer", Communications of the ACM, 6, 37-38.

16. Norman, J.E. and Cannon, L.E. (1973). "A Computer Program for the
Generation of Random Variables from any Discrete Distribution",
Journal of Statistical Computation and Simulation, 1, 331-348.

17. Pak, C.H. (1975). "The Generation of Poisson Random Variates",
Journal of the Korean Institute of Industrial Engineering, 1, 1,
87-92.

18. Schmeiser, B.W. (1980). "Random Variate Generation: A Survey",
Simulation with Discrete Models: A State of the Art View, ed.
Oren, Shub, and-Roth, IEEE.

19. Schmeiser, B.W. and Lal, R. (1980). "Squeeze Methods for
Generating Gamma Variates", Journal of the American Statistical
Association, 75, 371, 679-682.

20. Snow, R.H. (1968). "Algorithm 342: Generator of Random Numbers
Satisfying the Poisson Distribution", Communications of the ACM,
11, 12, 819-820.

21. Tadikamalla, P.R. (1979). "A Simple Method for Sampling from the
Poisson Distribution", Working paper 365, Graduate School of
Business, University of Pittsburgh.

22. Walker, A.J. (1977). "An Efficient Method for Generating Discrete
Random Variables with General Distributions", ACM Transactions on
MathematicaL Software, 3, 253-256.

21

APPENDIX: PROPERTIES OF b(x) AND tx)

Four inequalities used in algorithm PTPE are discussed here.

Proposition 1 considers b(x) < f(x) < t(x), which is necessary for the

acceptance/rejection parts of PTPE. In addition, in PTPE f(x) is

squeezed by upper and Lower bounds which are pioved valid in

Propositions 2 and 3, respectively.

Results 1-3, stated below without proof, are necessary for the

proofs of Propositions 1, 2, and 3. All follow from the Taylor series

expansion of the logarithm (see e.g., Abramowitz and Stegun p1).

2
Result 1. If a < b, then Ln(b/a) > q + q /2, where q = (b-a)/b.

Result 2. For all a > 0 and b > 0, Ln(b/a) < q - q2/2 + q 3/3, where

q = (b-a)/a.

Result 3. For all a > 0 and b > 0, tn(b/a) > q - q2/2 + q3/3 - Aq4/4,
-1

where q = (b-a)/a and A = 1 if a < b and A = (1+q) if a>b.

Lemma 1 is used in the proof of Proposition 1.

Lemma 1. For all u > 0,

f x) < f (x) < fM(x) if x=0,1,2,...,M

and

f x) > f (x) > fW(x) if x=M,M+1,...,

22

where M = <P> and f (x) = X-MM!/x!.

x-M
Proof. The ratio f (x)/f M(x) = (I/M) . Since M < P, the right side

inequalities follow. Similarly, the Left side inequalities follow from

fM+lE(x)/f (x) = ((M+l-c)/p)x-M -

Proposition 1. For ii > 10 and xc (-=,), b(x) < f(x) < t(x), where t(x)

and b(x) are defined in Equations (2) and (3), f(x) is defined in

Equation (1), and specific constants are defined in Step 0 of algorithm

PTPE.

Proof. The proof is trivial for xc (-°,-.5), since f(x) = 0.

Consider xc (-.5,xL -. 5). Since xL > 0,

(xL/xL)(xL/(xL-1))...(xL/< x+1.5 >) > 1

which implies
XL<x+.5 >

xL > xL'/< x+.5 >!.
L -L

Then

L x+.5 > (x+.5)-< x+.5 >
xL > (XL/J XL'/< x+.5 >!
L LL

since xL <P and (x+.5) > < x+.5 >.

Direct algebra yields

XL-(x+.5) < x+.5 >-M-(xL-M)+(xL-(x+.5))
x L > 4 XL!/< x+.5 >!

which implies

(PX MI/XL1)(xL/OjX L- + 5 > ,< x+.5 >-M M!/< x+.5 >!

which implies

f(xL) exp[(xL-(x+.5))tn(xL/ /) > f(x). (A-i)

23

AppLying Result 1 to ln(xL/' 10 -inU/x) yields

f~x L) expC- XL(C(x+.5))] > f(x), (A-2)

where X = aL + a 2/2 with a = (II-x)/Ui.
LL L L L

The majorizing function used in the algorithm, valid for ii > 10, is

k L expE-xL (x -(x+.5))] > f(x), (A-3)

where k L = .109 + 8.25/(10.86 + 0'. Inequality (A-3) requires

f(x L) < k Lfor all v~ > 10. Since k L < M, Lemma 1 implies that only

integer values of u need be considered. The inequality was numerically

verified for Pi = 10,11,.. .,10000. The proof that f~x L) <k L for

vJ c 110000,-) is based on showing f(x L < z 1Cx L) < Z 2Cx L) < k L"where

z 1(L) ep[(xCL 2 2 and z C x L) expE-(2.195 F 3.2) 2/ (2 iI.

The Left inequality is from the normal majorizing function used by

Ahrens and Dieter [4J for all x < < vi-1.1484 >. The center inequaLity

follows from -(xL~J C 0 2.195 tv-2.2 >2 < -(2.195 ru -3.2) . The

right inequality follows from z 2(10000) = .0964 < min k L =109 and that

for all)j c [10000..-), z 2 x L) is a decreasing function of p. That

z 2(x L) decreases follows from d in z2 (x L)/dtA = -3.512'3/ + 5.12P-

which is negative for AL P > 2.1254.

Similar Logic for x E (x R -' 5,-) Leads to

c expE-X (x+.5-x R)l > f~x), (A-4)

where c = .133+8.56/(6.83+0i for all pi > 10.

Now consider x c ExL.S5,x 51S, for which b~x) < f~x) < t~x) must

be satisfied, where b~x)= 1 -IM-x+.5 I/p, and

24

t(x) (1+0) - IM-x+.51/pl. Again, 11 E [10,10000] was checked

numerically; using tU = M+1-E when x < M and P M when x > M for

b~.x) < 1Wx and p' = M when x < M and P = M+1-c when x > M for

f(x) < t(x), as indicated by Lemma 1. For P~ > 10,000, consideration of

Limiting values and the asymptotic value of .133 for c indicates the

inequality is satisfied. 11

Lemmas 2, 3, and 4 are needed for the proofs of Propositions 2 and

3, which are upper and Lower bounds on f(x), respectively.

Lemma 2. For M = < ii >, (M+.5)tn(M/P) < M - P

Proof. Substituting x=M/w into the well-known inequality Zn x < x-1

and multiplying by M+.5 yields (M+.5)tn(M/pi) < CM/lU)CM-lj)+CM-i)/(2p).

Since (M-0i/(20i < 0 and 0 < M/ii < 1, the result is obtained. I

Lemma 3. For v > P* and M = < p >

M - U + g(P) < (M+.5)tnCM/u),

where g~p*) =(< P* > + .5)Ein~v*/(tp + .5))] + .5.

Proof. The proof shows that g(p*) minimizes

q(0) Min [(M+.5)Zn(M/p)-(M-v)].

v < U
M= <ii0

4First consider Min g(u). betting dlg(O)/dp = 0 and checking that
2 2 M < t, < M+1

d g~u)/dp > 0 yields u = M+.5. The problem is now to find the value of

M which minimizes (M+.5)tnCM/(M+.5))+.5 subject to M > <P >. Since the

function increases with M, as can be seen graphically or by evaluating

....1.

25

derivatives, the optimal value is M < v> I>

Lemma 4. Consider

6(M-y)= (M-1 -y- 1)/12 - (M-3-y-3)/360 + (M5- y-5)/1260,

6(My) -(2y) - - (360M) - 1 - (1260y'5) - I ,

and

6 u(M ,y)= (12M*) - + (360y* 3)- + (1260M*5) -1

IF M > M and y > y , then IL (M ,y) < 6(M,y) < 6u(M ,y

Proof. The Lower and upper bounds are obtained directly by minimizing
ter b tem or L(* *

term by term for C(M *,y) and maximizing term

by term for 6(,Y)* II

Proposition 2. Consider

Ub = y-tj+(y+.5)q(l+q(-.5+q/3))+6u(M ,y)
Ub

where q = (-y)/y. If M > M* and y > y , then Ub > tn f(y).

Proof. The proof algebraically simplifies In f(y), which is evaluated

using Stirling's Formula. Further simplification results from

inequalities on relatively insignificant terms.

. 'i. . _--- z -

26

i f(y) = (y-M) In i'+ tn M! - fn y!

= (y-M) In 11

+ (M+.5) I M - M + Itn 2"-r + (12M)

- (360M3)-1 + (1260M5)-1 + o(M)-7)

- (y+.5) gn y - y + In 121 + (12y) 1

3 -15-17
- (360y3) + (1260y5) 1 + o(y) -7

= C(y+.5) - (M+.5)]tn p + (M+.5)n M - (y+.5)Ln y

-1M + y + 6(M,y)

= (M+.5) In(M/p) + (y+.5) tn(p/y) - M + y + 6(M,y) (A-5)

where

d(M,y) (M-1-y-I)/12 - (M-3-y -3)/360 + (M-5-y-5)11260 + o((M-y)-7).

Applying Lemma 2 to the first term, Result 2 to In(ply) and Lemma 4 to

6(M,y) in Equation (A-5) yields the result.

Proposition 3. For M > M* and y > y*,

Ub < in f(y),
where D -- (y+.5)qA/4, A 1 if q > 0 and a = (1+q) if q < 0, and

q - (try)/y.

27

Proof. U b D + g(p*) - vMY)- vjr'y)

= ry - pi + Cy+.5)q(1+q(-.5+q/3)) +, M*,y*)) (,*

- 1(y+.5)q 4 &/4,) - 6u(M*,Y*) + &L(M,y)

= y - pi + (y+.5)Eq-q 2/2+q 3/3-q 4 /4] + g(p*) + 6LM,y*). (A-6)

From Lemma 3, g(pi) < (M+.5)tn(M/i) - M + pi; from Lemma 4,

6LM * ') < 6(M,y); and from Result 3 applied to R*n(i/y), Equation (A-6)

is Less than tn f(y).II

-wo

28

I00 00
10 0 , ' Il

1000I

N 1 0. C

LLJ

aL-

00

LmA

29

f(x)
tl(x)

b~x) i r/

.. 00

/ II
FIGUE B COPARSONOF EACTANDFAS SE-UP

30

Carputer odes used to obtain the (Xlrputational results
of section 4, "Poisson Randcin Variate Generation" by
Bruc~e Schreiser and Voratas Kachitvichyanukul.

C THIS IS THE MAIN PPOCrAN TO TEST VARIOUS METHODS
C 07 CEt2ERATIhC POISSON RANDU;1 VARIATES

C

C
C

DIMENSION NAME(5),XXMU(13)
DATA NAME/'flUr''PTPE',l'POISS'.'IP','PA"/
DATA XXMU/1O..25..5O.,50.5, 100.,25. 000OO.,3000.,
1 N=00 000.,10000.,50000.,1000000./

IEEED=0
L.RITE(6, 1000)

1000 FORMATCIH1)
DO 400 L=1,13
XrIU=XXMU CL)

Ti1EAN=XXMU CL)
TUAR=XXMU(CL)
STE=SORT(TUAR/N)
WR-ITE(SP3000) N'iTrEANP1TARoSTE

3000 F~A X
1 /3X,'::::: SAMPLE SIZE = '15,'
2 /IIX,'TIME 11EAN UARIANCE STD ERROR'/
3 ' TRUE '93F15.3)
DO 100 I=1,5
SUMT=0.0
DO 150 J=194
sUtl=0.0
SUM2O0.0
CALL SECOND(T1)

C
DO 300 K=1,N
CO TO CI.2p,495),I

1 CONTINUE
CO TO 200

2 CALL PTPE(XMUISEEDII)
CO TO 200

3 CALL KPOISS(XrIU9ISEED#II)
GO TO 200

4 CALL IP(XMUISEEDII)
GO TO 200

5 CALL PA(XMUsISEEDPII)
200 SUM=SUm+II

SUM2=SUM2+IlI:II
200 CONTINUE

C
CALL SECOND(T2)
TIME=1000.*(T2-Tl)/N
SUiIT=SUJIT+T IME
AUGTSIIT/J
XMEAIMu5U114

200UARwSUII2/N-XMEAtI*XMEAN

10CCH TINUE
40CONTINUE

STOP
END4

.....I ...

31

EUM'OUTINE PTFEO-'MUISEEU.JX)
C
C FOISSONI RANDOM UARIATE GENERATOR
C ,'U I EF.N (XlV'j GE. 10)
C IcEED : RANDCrI NUMBER SEED
C :RANDC;ILY GENERATED OBSERVATION
C
C r7_UCE W. SCHMEISER AND UORATAS KACHITUICHYANUKUL
C PURDUE UtIIUERSITY, SEPTEMBER 1980.
C REUISED JULY9 1981
C MIETHOD ACCEPTANCE-REJECTIONI UIA FOUR REGION COMPOSITION
C AUXILIARY REOUIRED SUBPROGRAM
C UNIFOR11 (0,1) RANDOM NUMBER GENERATOR
C

DATA YMU-1./
IF(XtIU.EO.YMU) GO TO 2

C
C**..*SETUP (EXECUTE ONLY WJHEN XMU CHANGES)
C

YMU=XMU
11=YMU
FM=M1
P1=INT(2. 195*SORT(FM)-2.2)+0.S
C=. 133+8.56-'(G.83+YMU)
XM=Mr+o. 5
XL=XM-PI
XR=XM+P1
AL=(CYMU-XL) YMU
XLL=AL*(1.+.5*AL)
AL=(XR-YfIU)/XR
XLR=AL*(l1.+.S*AL)
P2=Pl*(1.+C+C)
P3=P24(0. 109+8.25-C 10.86+YM'U))XLL
P4=P3+C/XLR

C
C*'***GENERATE UARIATE
C

2 U=RANF(ISEED)*P4
V=RAriF(ISEED)

c
C TRIANGULAR REGION
C

IF(U.GT.P1) GO TO 3
IX=XM-P1*U+U
GO TO 14

C
C PARALLELOGRAM REGION
C

3 IF(U.GT.P2) GO TO 4
X=XL+(U-P1)'C

* U=U-:C+1.-ABS(FM-X+0.S)/Pl
IF(U.CT.1.) GO TO 2
I X=X
GO TO 6

C
C LEFT TAIL

4 IFCU.GT.P3) GO TO 5

IX=XL+ALOG(U)/XLL

I o "

32

IF(IX.LT.0) GO TO 2
U=U: (U-P2)*XLL
GO TO 6

C
C RIGHT TAIL
C

5 IX=XR-ALOG(U)/XLR
V=U.Z (U-P3)*XLR

C
C:-**-ACCEPTANCE-REJECTION TEST. COMPARE U TO
C THE SCALED POISSON MASS FUNCTION
C

G IF(rl.CE.100.ArID.IX.GT.50) GO TO 12
C
C EXPLICIT EVALUATION
C

F=1.0
IF(1l-IX) 7911,9

7 IiP=11+1
LO 8 I=I1P,IX

8 F=F-;YNU/I
CO TO 11

9 IX1=IX+1
DO 10 I=IX1,M

10 F=F*I/YMU
11 IF(V-F) 14914P2

C
C SGUEEZINC USING UPPER AND LOWER BOUNDS ON ALDC(F(X))
C

12 X=IX
0=(YMU-X)'X
UB=X-YtIU+(X+.5)*O*(I *+*(-.5+.33333333333*0))+. 00084
ALU=ALOC (U)
IF(ALV.CT.UB) GO TO 2
D=(X+0.5)*.25*(O*G)**2
IF(O.LT.0.) D=D/(1.+G)
IF(ALV.LT.UB-D-.004) GO TO 14

C
C STIRLING'S FORMULA TO MACHINE ACCURACY FOR
C THE FINAL ACCEPTANCE/REJECTION TEST
C

IF(ALU.GT. (FM+.5)*ALOG(FM/YMU)+(X+.5)*ALOG(YtiU/X)-FM+X
1 +(l.,FM-1.,X),12.+.0027777777778/(X*X*X)
2 -.00277777778/(FM*FM*FM)) GO TO 2

14 JX=IX
RETURN
END

